BIOLOGISTS have long been fascinated by how cells target proteins to specific intracellular compartments and maintain their localized distributions. The problem of how proteins are sorted to particular membrane-bound organelles has been the focus of considerable effort in the last decade. As a result, a good deal is known about protein sorting signals (48, 54), the protein machinery needed for budding and docking vesicles in the secretory pathway (48, 54), and the mechanisms for transporting vesicles along microtubules and actin filaments within the cytoplasm (55). In contrast to the relative wealth of information concerning the sorting of membrane proteins, very little is understood about how cytosolic proteins are partitioned within the cytoplasm. However, it has become increasingly clear that the transport of mRNAs, and not the translated proteins themselves, constitutes an important means of localizing cytosolic proteins (Table I). The first evidence for cytoplasmic RNA localization came from the finding that actin transcripts are unevenly distributed in the ascidian embryo (29). Shortly thereafter, several maternal mRNAs were identified in Xenopus (53) and Drosophila (17) that are localized during oogenesis. More recently, localized mRNAs have been discovered in somatic cells (Table I), making it clear that mRNA localization serves as a general mechanism for creating asymmetric distributions of proteins in the cytoplasm (discussed in several recent reviews; 42, 58, 62).

While mRNA localization has been well documented in many systems, the mechanism that generates restricted RNA distributions is less well understood. mRNA could become locally trapped after diffusing randomly through the cytoplasm, or it could be actively transported along cytoskeletal elements to its target. These two possibilities can be best distinguished by directly visualizing the movements of mRNA within cells. By injecting fluorescently labeled mRNA encoding myelin basic protein into oligodendrocytes, Ainger et al. (1) report in this issue of the Journal of Cell Biology that mRNA forms "particles" that undergo unidirectional transport, similar to that described for motor-driven movements of membranous organelles (2, 69). These observations, as well as related work by other investigators, suggest that there is an ordered pathway (see Fig. 1) for mRNA localization consisting of: (a) formation of a RNP particle; (b) translocation of the particle to its destination; (c) anchoring of the particle to the cytoskeleton; and (d) translation of the localized mRNA. In this review, we will discuss what types of mRNAs are localized as well as the evidence supporting such a stepwise localization pathway.

Why Sort mRNAs?
mRNA localization has been most extensively studied in Drosophila embryogenesis, where its role is to establish protein gradients that give rise to the embryonic body plan (for review see reference 61). Two of the best studied examples are bicoid and nanos, two mRNAs that are transferred from the nurse cells to the oocyte and are then localized to the anterior and posterior poles, respectively. The bicoid gene encodes a homeodomain protein that initiates the series of transcriptional events that are responsible for the formation of the anterior body segment (13, 14). Nanos, on the other hand, encodes a RNA binding protein that promotes the formation of the posterior body plan by blocking the translation of hunchback, a transcription factor induced by the bicoid cascade (20, 65, 73). Thus, the differential localization of these antagonistic factors plays an important role in establishing the anterior–posterior axis in Drosophila. Several mRNAs have also been isolated from Xenopus oocytes which are selectively distributed to the animal or vegetal poles and then partitioned to a subset of cells during the early embryonic cleavages. One of these is Vgl, a TGF-β homologue that can induce mesoderm formation (67, 72). Examples of localized RNAs have also been discovered in zebrafish oocytes and early embryos (Conway, G., and W. Gilbert, personal communication). Thus, mRNA localization appears to be a widely used mechanism for establishing gradients of proteins that determine cell fate during early development.

mRNA localization also serves as a means of spatially controlling macromolecular assembly reactions. Several types of cytoskeletal proteins, such as vimentin (27) and muscle myosin (28), self-assemble rapidly after translation, which necessitates restricting their synthesis to regions where filaments are required. In the case of vimentin, the coincident changes in mRNA localization and filament distribution that occur during muscle development (9) support the idea that mRNA localization determines the distribution of these polymers. Actin mRNA is also concentrated in the lamellapodia of motile cells (38) and the apical domain of epithelial cells (7). Localized synthesis of actin in these regions may help to drive filament formation.

Recent work has suggested that mRNA localization is also used to segregate actin isotypes. Two studies have shown that the β-actin message accumulates at the periphery of cultured
myoblasts, while the messages for α- and γ-actin are restricted to the perinuclear region (24, 32). Although the functional differences between these actin isotypes remain unknown, one reason for segregating their mRNAs may be to incorporate different actin isotypes into distinct filament arrays. Consistent with this idea, β-actin protein is not incorporated into stress fibers in migrating pericytes, but is only found at the leading edge where its mRNA is localized (25). An alternative explanation for the differential localization of actin isotypes is that some messages are localized to increase regional actin concentration, whereas other actin mRNAs adopt a perinuclear distribution to maintain steady-state actin levels throughout the cell (24).

While the purpose of segregating actin isotype mRNAs remains uncertain, localization of mRNAs encoding microtubule-associated proteins (MAPs) plays a clear role in establishing the distinct packing arrangements of microtubules observed in axonal and dendritic processes (6). MAP2 mRNA, for example, is localized to dendritic processes and cell bodies, but not to axons (4, 19, 33). On the other hand, the mRNA encoding tau, an axonally localized MAP, is concentrated in the proximal axon and axon hillock (40), where the newly translated protein presumably can bind to microtubules destined for transport down the axon (30). The distribution of these mRNAs stands in marked contrast to most other neuronal mRNAs which are restricted to the cell body and are unable to enter neuronal processes.

Given the need for partitioning cytosolic proteins, why is mRNA transport used when other forms of protein targeting, such as nuclear, mitochondrial, or chloroplast import, rely upon protein-based signals? One reason for exploiting mRNA transport is that a single mRNA can be translated many times, making it an efficient mechanism for producing high local protein concentrations. Translation can also be made dependent on proper mRNA localization (to be discussed later), thereby ensuring correct protein positioning and preventing deleterious protein-protein interactions from occurring elsewhere in the cell. Furthermore, a variety of spatial patterns of proteins can be achieved by modulating the distribution of RNA as well as the diffusion of the translated protein from its site of synthesis. In the case of proteins such as vimentin that assemble rapidly after translation, the distribution of protein can be very precisely defined by the localization of its mRNA (9). Bicoid protein, on the other hand, diffuses from its site of synthesis, thereby establishing a gradient across the Drosophila oocyte (13). Thus, mRNA transport affords a number of advantages over posttranslational sorting for regulating protein distribution.

Assembly of an RNA Transport Particle

Most biological sorting events, such as membrane trafficking (54), nuclear import (57), and protein translocation across the ER (52), are mediated by large macromolecular assemblies. mRNA transport and sorting will most likely prove to be no exception. The first hint that RNA may be transported as a large RNP particle (Fig. 1, Step 1) came from work on the BC1 message, a 152-bp polymerase III transcript that is localized to dendrites of mammalian neurons (68). When extracted from neuronal tissue, the BC1 RNA was discovered to be part of a 10S RNP complex (35), whose function and components remain to be elucidated. Since BC1 is not translated and hence different from other localized RNAs, it was uncertain whether RNP formation is a universal requirement of the RNA localization pathway. However, Ainger et al. (1), as well as other investigators (9, 64), have shown by high resolution in situ hybridization that localized mRNAs display a granular pattern in the cytoplasm. Although such observations might be discounted as fixation artifacts, fluorescently labeled mRNA encoding myelin basic protein (MBP) also forms similar-sized particles within a few minutes after being microinjected into oligodendrocytes. RNP formation, however, is not uniquely associated with localized mRNAs, since globin mRNA also forms particles after microinjection.

---

1. Abbreviations used in this paper: MAP, microtubule-associated protein; MBP, myelin basic protein; UTR, untranslated region.
been identified for a number of mRNAs, and all, without ex-
nonlocalized mRNAs are segregated into different particles.

Table I. Localized RNAs

<table>
<thead>
<tr>
<th>Cell type and transcript</th>
<th>Activity</th>
<th>mRNA distribution</th>
<th>Reference</th>
</tr>
</thead>
<tbody>
<tr>
<td>Neurons</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>MAP2</td>
<td>Microtubule associated protein</td>
<td>Dendrites and cell body</td>
<td>4, 19, 33</td>
</tr>
<tr>
<td>Tau</td>
<td>Microtubule associated protein</td>
<td>Proximal axon and cell body</td>
<td>40</td>
</tr>
<tr>
<td>α-CAM kinase II</td>
<td>Kinase</td>
<td>Dendrites and cell body</td>
<td>5</td>
</tr>
<tr>
<td>BC1</td>
<td>Unknown</td>
<td>Dendrites and cell body</td>
<td>68</td>
</tr>
<tr>
<td>Oxytocin</td>
<td>Hormone</td>
<td>Axon and cell body</td>
<td>45</td>
</tr>
<tr>
<td>Vasopresinin</td>
<td>Hormone</td>
<td>Axon and cell body</td>
<td>45</td>
</tr>
<tr>
<td>Oligodendrocytes</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Myelin basic protein</td>
<td>Myelin formation</td>
<td>Cell body and processes</td>
<td>1</td>
</tr>
<tr>
<td>Xenopus oocytes</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Vgl*</td>
<td>TGF-β homologue; induces mesoderm</td>
<td>Vegetal pole</td>
<td>44</td>
</tr>
<tr>
<td>TGF-β5</td>
<td>TGF-β isoform</td>
<td>Vegetal pole</td>
<td>49</td>
</tr>
<tr>
<td>XCAT-2</td>
<td>Nanos-like zinc finger</td>
<td>Vegetal pole</td>
<td>46</td>
</tr>
<tr>
<td>An1</td>
<td>Ubiquitin-like protein</td>
<td>Animal pole</td>
<td>39</td>
</tr>
<tr>
<td>An2</td>
<td>α-subunit of mitochondrial ATPase</td>
<td>Animal pole</td>
<td>71</td>
</tr>
<tr>
<td>An3</td>
<td>Homology to RNA dependent ATPases</td>
<td>Animal pole</td>
<td>23</td>
</tr>
<tr>
<td>Drosophila oocytes</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Bicoid*</td>
<td>Homeobox gene; establishes anterior embryonic pattern</td>
<td>Anterior pole</td>
<td>13, 14, 17</td>
</tr>
<tr>
<td>Oskar</td>
<td>Required for abdomen and germ cell formation</td>
<td>Posterior pole</td>
<td>16, 31</td>
</tr>
<tr>
<td>Nanos*</td>
<td>Zn finger RNA binding protein; represses hunchback translation</td>
<td>Posterior pole</td>
<td>20</td>
</tr>
<tr>
<td>Cyclin B*</td>
<td>Cell cycle regulator</td>
<td>Posterior pole</td>
<td>10</td>
</tr>
<tr>
<td>fs (1)K10*</td>
<td>Required to establish dorsoventral axis</td>
<td>Anterior pole</td>
<td>8</td>
</tr>
<tr>
<td>Adducin-like</td>
<td>Possible cytoskeletal associated protein</td>
<td>Anterior pole</td>
<td>12</td>
</tr>
<tr>
<td>Muscle cells</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Vimentin</td>
<td>Intermediate filament</td>
<td>Costameres</td>
<td>9</td>
</tr>
<tr>
<td>α-actin*</td>
<td>Actin isoform</td>
<td>Perinuclear</td>
<td>32</td>
</tr>
<tr>
<td>β-actin*§</td>
<td>Actin isoform</td>
<td>Peripheral and perinuclear</td>
<td>24, 32</td>
</tr>
<tr>
<td>γ-actin</td>
<td>Actin isoform</td>
<td>Perinuclear</td>
<td>24</td>
</tr>
</tbody>
</table>

* mRNAs whose localization signals have been mapped. In all cases the localization signal has mapped to the 3′UTR.
† This is only a partial list of the mRNAs that are localized during Drosophila oogenesis.
‡ β-actin is also localized to lamellapodia in fibroblasts.
§ Only the magnocellular neurons express these transcripts.

(1). Although not demonstrated directly by coinjection ex-
periments, these results further suggest that localized and
nonlocalized mRNAs are segregated into different particles.

The recognition system that distinguishes localized mRNAs
from the majority of other RNAs in the cell is just beginning
to be deciphered. The cis-acting localization signals have
been identified for a number of mRNAs, and all, without ex-
ception, lie within the 3′ untranslated region (3′UTR) (see
Table I). The minimum region within the 3′UTR required for
localization has been mapped by deletion analysis for Vgl
(47) and bicoid (43), and in both instances, it was found to
be relatively large (340 bp for Vgl and 625 bp for bicoid).
Although there has been one report of a 9-bp sequence motif
that is common to the 3′UTRs of several localized transcripts
(22), most analyses have found very little conservation of the
primary sequence amongst localized mRNAs. For example,
the 3′UTRs of bicoid mRNAs from different Drosophila spe-
cies localize properly in D. melanogaster, even though they
have diverged considerably in sequence. Interestingly, these
bicoid 3′UTRs are all predicted to form a similar secondary
structure (41), which suggests that trans-acting factors may
recognize the RNA's conformation rather than its sequence.

While progress has been made in identifying the cis-acting
localization signals, identification of the protein components
that recognize these elements has proven more difficult.
Genetic studies in Drosophila, however, have identified a
number of possible candidates (for review see reference 42).
One of the best-characterized candidates is staufen, a gene
that is required for the proper localization of several mRNAs
in oocytes (60). The staufen protein has been shown to bind
double-stranded RNA in vitro, suggesting that it may play a
role in the formation of a mRNA transport particle (61).
Consistent with this idea, bicoid 3′UTRs aggregate into parti-
cles when microinjected into Drosophila embryos, but this
is not observed in staufen mutants (Ferrandon, D., and C.
Nusslein-Volhard, personal communication). Staufen may
not be essential for the transport of all mRNAs, however,
since mutations in staufen abolish the localization of posteri-
orly targeted mRNAs (16, 31), but only have mild effects on
anteriorly localized messages (12, 14). A number of other
genes have been identified that also play a role in mRNA lo-
calization in Drosophila, but again, none of these appears to
be essential for the localization of all transcripts in the oo-
cyte. This implies that either independent localization path-
ways exist or that the proteins required for both anterior and
posterior localization have yet to be identified.

Biochemical approaches have recently begun to comple-
ment genetic studies in isolating components of the transport
complex. The most tantalizing finding so far is the discovery
of a 69-kD protein that specifically binds to the portion of
the Vgl 3′UTR that is required for localization (56). Binding
is competitively inhibited by another transcript that is local-
ized to the vegetal pole, TGF-β5, but not by a mRNA that
is localized to the animal pole, An2. Thus, this 69-kD pro-
tein may represent a component of the transport complex that
specifically recognizes vegetal pole localization signals.
The Role of Cytoskeletal Motors in RNA Localization

After a RNP particle is formed, it must then reach its target (Fig. 1, Step 2). Localization of bicoid mRNA to the anterior pole of Drosophila oocytes was initially believed to occur by a diffusion-trapping mechanism. However, later studies showed that localization of several RNAs could be blocked by cytoskeletal inhibitors (see below), indicating that cytoskeletal filaments and motor proteins may play a role in moving RNP particles. This hypothesis has now received its strongest support from Ainger et al. (1), who have made microscopic observations of fluorescently labeled MBP mRNA inside of oligodendrocytes. Within these cells, particles containing fluorescently labeled RNA moved unidirectionally from the cell body through the long processes to the membranous sheaths where the endogenous transcript is normally found. A control microinjected mRNA (globin), on the other hand, did not move into oligodendrocyte processes. This finding conclusively reveals the existence of an active transport process for localizing mRNA.

MBP mRNA particles moved at 12 μm/min, which is comparable with the speed with which membrane vesicles are transported along microtubules or actin filaments (2, 55). This rate is far faster, however, than those measured for RNA transport in Xenopus oocytes (0.07 μm/min) (74) and neurons (0.35 μm/min) (11). The difference in these rates is comparable to that observed for slow and fast axonal transport (3), which could indicate that different mRNAs are transported by distinct mechanisms. However, the slow net RNA transport observed in oocytes and neurons could also be explained by pausing or discontinuous movement of individual RNP particles. The observation that the majority of MBP mRNA particles are stationary at any given moment of time lends support to the latter hypothesis.

Ainger et al. also observed that mRNA particles are in close proximity to microtubules, suggesting that these polymers serve as the tracks for mRNA translocation. Microtubules have also been implicated in mRNA transport in other systems as well. Pharmacological agents that inhibit microtubule polymerization prevent the localization of both Vgl in Xenopus (74) and bicoid in Drosophila (50). Furthermore, a dramatic reorganization and polarization of the microtubule array occurs in these oocytes just at the onset of RNA localization (18, 66), again implicating microtubule involvement in RNA transport.

A variety of microtubule force-generating proteins belonging to the kinesin and dynein superfamilies (15, 21, 70) have been identified that could serve as motors for mRNA transport. One clue as to what type of motor might be involved comes from ascertaining the direction of mRNA movement with respect to the polarity of the microtubules. During the time when bicoid and oskar transcripts are being localized to the anterior and posterior poles of the Drosophila oocyte, the microtubule network is nucleated at the anterior pole. Although the polarity of this network has not been established directly, the localization of a β-galactosidase/kinesin fusion protein to the posterior pole (Clark, I., and Y. N. Jan, personal communication) suggests that the minus ends of microtubules are clustered at the anterior end of the oocyte while the plus ends project toward the posterior pole. Thus, posterior pole mRNAs (nanos, oskar) may be moved by plus-end directed motors (e.g., kinesin), while anterior pole mRNAs (bicoid and K10) are likely to be translocated by minus-end directed motors (e.g., cytoplasmic dynein).

Actin and myosin may also participate in the translocation of some mRNAs. Evidence for actomyosin involvement comes from the finding that actin mRNA localization in fibroblasts is inhibited by the actin depolymerizing drug cytochalasin, but not by microtubule depolymerizing agents (63). This finding raises the possibility that mRNAs might be capable of moving along both actin and microtubule filaments. This idea is not without precedent, since neuronal vesicles have been found to translocate on both microtubules and actin filaments (36).

How motors associate with RNA remains unresolved. Motors could attach directly to RNP particles, much as motile motors bind the nucleic acid–protein complex of the kinetochore (26). Alternatively, the association between the motor and the RNP could be indirect, with the RNP binding to vesicles and hitching a ride on the normal organelle transport pathways. The isolation and biochemical characterization of RNA transport complexes as well as the development of in vitro assays to assess RNA motility should provide a means for determining which of these possibilities is correct.

Anchoring of Localized mRNAs

After reaching its final destination, the mRNA must maintain its localized distribution (Fig. 1, Step 3). The active transport process that initially localized the mRNA could be used to collect the RNA that wanders astray by diffusion. However, microtubule inhibitors, which abolish active transport of mRNA in oocytes, fail to disperse localized Vgl (74) or bicoid (50) mRNA. Furthermore, the reorganization of microtubules at stage 10 of Drosophila oogenesis (66) is not accompanied by a corresponding redistribution of localized messages. These results argue that mRNAs become anchored at their final target by a mechanism independent of microtubules and cytoplasmic transport.

Some element of the cytoskeleton is almost certainly involved in anchoring messages, since localized mRNAs, in contrast to other RNAs, are not solubilized by Triton X-100 (74). Actin filaments are the most likely candidates, since Vgl becomes dispersed after cytochalasin treatment (74). Cytokeratins have also been suggested to participate in RNA retention (51), but their role is probably secondary to actin's, since fragmentation and disassembly of cytokeratins in oocytes does not release the Vgl transcript from the detergent-insoluble matrix (34).

The anchoring of transcripts to the cytoskeleton presents another opportunity for the cell to regulate mRNA distribution. The localized Vgl message, for instance, is found initially in the detergent-insoluble cytoskeletal fraction, but then becomes detergent soluble at the time of oocyte maturation. This change in detergent extractability occurs at the time that Vgl message loses its tight cortical localization and becomes diffusely distributed over the vegetal hemisphere (44). In contrast, the XCAT-2 transcript remains in the detergent insoluble fraction throughout oogenesis (46). Thus, the cytoskeletal associations of different localized mRNAs can be controlled independent of one another.

Coordinating mRNA Translation with Localization

To ensure a highly restricted protein distribution, it is gener-
ally thought that mRNA translation is repressed during transport and then activated upon arrival at its destination (Fig. 1, Step 4). The dependence of translation on proper mRNA localization would prevent the synthesis of proteins from transcripts that are either en route to their destination or that have become mislocalized. This may be particularly important in oocytes, where translation of mislocalized mRNAs could potentially have deleterious effects on embryogenesis.

Supporting the idea that mistargeted mRNAs are translationally repressed, Gavis, E., and R. Lehmann (personal communication) have shown that unlocalized nanos RNA is not translated and that this repression is mediated by the 3'UTR. The 3'UTR has also been implicated in the translational repression of cyclin B, a posteriorly localized mRNA. In this case, the deletion of a 39-bp segment in the 3'UTR relieved the translational repression of microinjected cyclin B mRNA, but did not interfere with its ability to be retained at the posterior pole (10). These results suggest that separate elements within the 3'UTR may control translation and localization.

How is translational repression relieved once mRNAs reach their correct destination? A likely possibility is that the components that override repression are themselves localized factors. Consistent with this idea, a posteriorly localized protein in Drosophila oocytes, vasa, has homology to eIF-4A, a double-stranded RNA helicase required for the initiation of translation (37). A putative RNA helicase is also encoded by one of the mRNAs localized to the animal pole of Xenopus oocyte (23). Direct evidence linking these proteins to translational activation of localized mRNAs, however, has not yet been obtained.

Conclusion

A variety of phenomenological observations have provided insight into the types of mRNAs that are transported, the cis-acting signals needed for localization and translational control, and the nature of mRNA movement through the cytoplasm. The molecular details of these events, however, still remain obscure. The next step in understanding this problem must involve identifying and characterizing the proteins that are needed for each particular step in the RNA localization pathway. If previous work on membrane protein sorting provides any precedent, studies of the RNA localization system should yield a host of novel proteins and interesting regulatory mechanisms that will keep biologists busy for years to come.

We thank the members of the Vale laboratory and G. Banker for their comments on this manuscript.

Received for publication 31 August 1993 and in revised form 6 September 1993.

References


Downloaded from www.jcb.org on March 13, 2007


